以中国人姓名命名的数学成果 1刘徽原理、刘徽割圆术:魏晋时期数学家刘徽提出了求多面体体积的理论,在数学史上被称为“刘徽定理”;他发现了圆内接正多边形的边数无限增加,其周长无限逼近圆周长,创立了“刘徽割圆术”
2祖率:南北朝数学家祖冲之将π计算到小数点后第七位,比西方国家早了1000多年被推崇为“祖率”
3祖暅原理:祖冲之之子祖暅提出了“两个几何体在等高处的截面积均相等,则两体积相等”的定理,该成果领先于国外2000多年,被数学界命名为“祖暅原理”
4贾宪三角:北宋数学家贾宪提出“开方作法本源图”是一个指数是正整数的二项式定理的系数表,比欧洲人所称的“巴斯卡三角形”早六百多年,该表称为“贾宪”三角
5秦九韶公式:南宋数学家秦九韶提出的“已知不等边三角形田地三边长,求其面积公式”,被称为“秦九韶”公式
6杨辉三角:南宋数学家杨辉提出的“开方作法本源”,后又称“乘方术廉图”,被数学界命名为“杨辉三角”
7李善兰恒等式:清代数学家李善兰在有关高阶差数方面的著作中,为解决三角自乘垛的求和问题提出的李善兰恒等式,被国际数学界推崇为“李善兰恒等式”
8华氏定理、华—王方法:1949年,我国著名数学家华罗庚证明了“体的半自同构必是自同构自同体或反同体”1956年阿丁在专著《几何的代数》中记叙了这个定理,并称为“华氏定理”此外,他还与数学家王元于1959年开拓了用代数论的方法研究多重积分近似计算的新领域,其研究成果被国际誉为“华—王方法”
9胡氏定理:我国数学家胡国定于1957年在前苏联进修期间,关于数学信息论他写了三篇论文,其中的主要成就被第四届国际概率论统计会议的文件汇编收录,并被誉为“胡氏定理”
10柯氏定理:我国数学家柯召于20世纪50年代开始专攻“卡特兰问题”,于1963年发表了《关于不定方程x2-1=y》一文,其中的结论被人们誉为“柯氏定理”,另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”
11王氏定理:西北大学教授王戍堂在点集拓扑研究方面成绩卓著,其中《关于序数方程》等三篇论文,引起日、美等国科学家的重视,他的有关定理被称为“王氏定理”
12陈氏定理:我国著名数学家陈景润,于1973年发表论文,把200多年来人们一直未能解决的“哥德巴赫猜想”的证明推进了一大步,现在国际上把陈景润的“1+2”称为“陈氏定理”
13侯氏定理:我国数学家侯振挺于1974年发表论文,在概率论的研究中提出了有极高应用价值的“Q过程惟一性准则的一个最小非负数解法”,震惊了国际数学界,被称为“侯氏定理”,他因此荣获了国际概率论研究卓越成就奖——“戴维逊奖”
14杨—张定理:从1965年到1977年,数学家杨乐与张广厚合作发表了有关函数论的重要论文近十篇,发现了“亏值”和“奇异方向”之间的联系,并完全解决了50年的悬案——奇异方向的分布问题,被国际数学界称为“杨—张定理”或“扬—张不等式”还有"侯氏制碱法"——在本世纪30年代,中国化学家侯德榜首创了联合制碱法。"吴公式"——1950年数学家吴文俊发现关于示性类公式,这是拓扑学中的基本公式。"黄方程"——中国固体物理学家黄昆,从1950年开始着重研究极性晶体的光学振动模型、综合介质的电磁理论和晶体动力学的观点,提出了一对唯象的方程。"吴氏通用理论"——中国著名工程热物理学家吴仲华,50年代初在国际上首次提出了"叶轮机械三元流动理论"“钱 伟 长 法” — 中 国 著 名 力 学 家 钱 伟 长, 在 力 学 研 究 中 成 功 地 用 系 统 摄 动 法 处 理 非 线 性 方 程“冯 氏 效 应” — 中 国 生 物 学 家 冯 德 培, 在 肌 肉 产 生 热 的 研 究 中, 发 现 牵 拉 能 使 肌 肉 放 热。“夏 不 等 式”与“夏 道 行 函 数” — 中 国 数 学 家 夏 道 行 在 泛 函 积 分 和 拟 不 变 测 度 论 方 面 取 得 研 究 成 果, 叫“夏 不 等 式”;在 解 析 函 数 方 面 的 研 究 成 果, 被 称 为“夏 道 行 函 数”。
“陈 氏 定 理” — 数 学 家 陈 景 润 1972年 初 提 出 证 明 哥 德 巴 赫 问 题 的 论 文, 论 证 了 一 个 大 偶 数 可 表 示 为 一 个 素 数 及 一 个 不 超 过 二 个 素 数 的 乘 积 之 和 (简 称“1+2”)。
“王 氏 大 麦” — 中 国 作 物 育 种 专 家、 生 物 统 计 学 家 王 绶 培 育 成 功 抗 冻、 抗 锈 力 强 的 大 麦 品 种。
“蔡 氏 核 区” — 中 国 生 理 学 家 蔡 翘, 在 研 究 澳 洲 袋 鼠 的 脑 结 构 中, 发 现 并 详 细 描 述 了 脑 内 顶 盖 部 一 个 神 经 核 连 接 关 系, 被 称 为“蔡 氏 核 区”。 “龚 氏 物 质” — 中 国 科 学 家 龚 立 三, 1981年 在 美 国 从 事 遗 传 工 程 研 究, 组 建 了 一 个 关 系 到 生 物 细 胞 对 外 抗 性 (如 抗 盐、 抗 旱) 的 新 质 粒, 并 用 这 种 质 粒 创 造 了 具 有 固 氮 作 用 和 能 抗 高 盐 的 新 生 物 体, 为 人 工 合 成 新 生 物 的 研 究 作 出 了 重 大 贡 献, 这 两 种 物 质 均 以 他 的 姓 氏 命 名。
“LO 克 隆 株” — 中 国 上 海 医 学 专 家 林 云 璐 (女), 在 英 国 进 修 期 间, 于 1982年 2月 选 择 出 国 际 第 一 株 小 鼠 甲 型 流 感 病 毒 特 异 杀 伤 细 胞 克 隆。 她 的 研 究, 为 临 床 制 备 疫 苗、 防 治 甲 型 流 感 提 供 了 可 靠 的 理 论 依 据。 她 的 导 师 特 用 林 云 璐 姓 氏 的 第 一 个 字 母 命 名 为“LO 克 隆 株”。
“修 氏 理 论” — 中 国 女 医 学 家 修 瑞 娟, 1982年 在 美 国 进 修 时, 发 现 并 首 次 证 明 了 各 级 微 动 脉 自 律 性 运 动 是 以 波 浪 式 进 行 传 播 的, 提 出 了 微 循 环 对 人 的 器 官 和 组 织 的 灌 注 的 新 理 论 — 海 涛 式 灌 注, 被 称 为“修 氏 理 论”。
“毛 粒 子” — 美 国 物 理 学 家、 诺 贝 尔 奖 金 获 得 者 格 拉 肖 把 新 发 现 的 亚 夸 克 粒 子 命 名 为“毛 粒 子”, 他 说:“因 为 这 与 中 国 的 毛 泽 东 有 联 系。 按 照 他 的 哲 学 思 想, 自 然 界 有 无 限 的 层 次, 在 这 些 层 次 内 一 个 比 一 个 更 小 的 东 西 无 穷 地 存 在 着。 因 此 我 想 取 用 他 的 名 字”。 早 在 1953年, 毛 泽 东 就 明 确 提 出 了“物 质 是 无 限 可 分 的, 基 本 粒 子 也 是 无 限 可 分” 的 科 学 论 断。
我国南宋时期的数学家秦九韶(约公元1202-1261年)独立地发现了计算三角形面积的公式
秦九韶公式记载于他的著作一书中,原文是:以小斜幂并大斜幂减中斜幂,余半之自乘于上,以小斜幂乘大斜幂,减上,余四约之,为实:一为多隅,开平方得积这就是说:小边平方加上大边平方的和减去中边平方,将所得的差险2,然后将所得商平方去减小边平方乘大边平方,所得差除于4,开平方后就可以得到三角形面积这是《九章算术》和刘徽注处理无理数方法的发展
秦九韶把这个公式称为"三斜还应积"
历史上研究他的人不多但明朝徐光启,清朝的李善兰等人肯定是看过他的著作的清朝人阮元与李锐等编写了一部天文数学家传记----《畴人传》,里面对他的学术成就有介绍
以上就是关于有谁知道哪些是以中国的数学家命名的全部的内容,包括:有谁知道哪些是以中国的数学家命名的、秦九韶公式记载于哪里原话是什么历史上都还有谁研、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!